Search results for "Wafer dicing"
showing 6 items of 6 documents
Stealth dicing with ultrafast Bessel beams with engineered transverse profiles
2017
International audience; We investigate high-speed glass cleaving with ultrafast laser beams with engineered transverse intensity profile. We achieve accuracy of ~ 1 µm at 25 mm/s and drastically enhance cleavability compared to standard Bessel beams.
Crack formation and cleaving of sapphire with ultrafast bessel beams
2017
Sapphire is a transparent crystalline dielectric of high hardness with many important applications, specifically to the next-generation touchscreens and to the LED growth, as substrates. However, sapphire cutting by ablative techniques is rather slow therefore fast material separation techniques are needed. Material separation by “stealth dicing” has been recently developed, it is based on material cleaving along a plane weakened by multiple ultrafast laser illuminations. This allows usually generating taper-free cutting and avoids material loss. However, the illuminated plane needs small spacing between the shot to shot (typically a few μm) and long damages inside the bulk. This requires l…
2018
We present the design, fabrication and characterization of long-range surface plasmon polariton waveguide arrays with materials, mainly silicones, carefully selected with the aim to be used as mechanically flexible single-mode optical interconnections, the so-called “plasmonic arc” working at 1.55µm. The fabricated plasmonic arcs show a TM/TE polarization ratio of ~25 dB. By using the cut-back method, the straight propagation loss at 1.55µm is estimated to 0.5-1 dB/mm and coupling loss to ~1-2 dB/facet after dicing. In the free-standing S-curved configuration, the bending loss of single cladding plasmonic arc is 2.2-2.8 dB/90° at bending radius 2.5 mm. For double cladding plasmonic arcs, it…
High efficiency frequency doubling in fully diced LiNbO3ridge waveguides on silicon
2016
Nonlinear periodically poled ridge LiNbO3 waveguides have been fabricated on silicon substrates. Components are carved with only the use of a precision dicing machine without the need for grinding or polishing steps. They show efficient second harmonic generation at telecommunication wavelengths with normalized conversion reaching 204%/W in a 15 mm long device. The influence of the geometrical non uniformities of waveguides due to fabrication processes is asserted. Characteristics of the components are studied; notably their robustness and tunability versus temperature.
Studies for low mass, large area monolithic silicon pixel detector modules using the MALTA CMOS pixel chip
2021
Abstract The MALTA monolithic silicon pixel sensors have been used to study dicing and thinning of monolithic silicon pixel detectors for large area and low mass modules. Dicing as close as possible to the active circuitry will allow to build modules with very narrow inactive regions between the sensors. Inactive edge regions of less than 5 μ m to the electronic circuitry could be achieved for 100 μ m thick sensors. The MALTA chip (Cardella et al., 2019) also offers the possibility to transfer data and power directly from chip to chip. Tests have been carried out connecting two MALTA chips directly using ultrasonic wedge wire bonding. Results from lab tests show that the data accumulated in…
Stealth dicing with Bessel beams and beyond
2016
In the context of laser cutting of transparent materials, we investigate glass cleaving with Bessel beams and report that a modification of the beam with 3 main lobes drastically enhances cleavability and reduces defects.